
I. INTRODUCTION

The Internet has recorded a rapid growth in the recent
times and extremely broad spectrums of available networks
have resulted into powerful, creative and useful applications.
Practically all the software applications have become online,
what to talk of Google Docs and Microsoft Office Live. As
a result the networks have become more open and accessible
consequently an adversary is not confined only to
eavesdropping but has become capable to perform a more
important role of acting like a man in the Middle Attack. A
large number of such types of attacks were witnessed during
the last decade [1][7]. Therefore, the security of the large
amount of data transferred during the last decade is at stake.

The cryptology as a science dates back to Caesar's
time. Since then a large variety of heuristics have been
proposed for safe and secured communication. However,
cryptanalysis has successfully and almost simultaneously
cracked these encryption techniques from time to time [2].
Therefore the basic and fundamental task of cryptography
is not only restricted to protect the secrecy of messages
transmitted over public communication lives but also to
subvert such cryptanalytic attacks which tend to become
rampant with the passage of time.

The broad classification of data encryption techniques
can be undertaken as symmetric and asymmetric key
cryptography. In case of symmetric key cryptography, the
same key is used by the sender and the receiver for
encryption and decryption respectively. The representative
algorithms of this approach are AES, TDES, RCS [3-4] and
the likes. But, Asymmetric or public key cryptography makes
use of two keys namely, the private key which is kept by
the receiver and the public key which is announced to the
public cryptosystems such as RSA, PGP and ECC [6] come
under this category some of the newer and recent data
encryption techniques include Quantum cryptography and
GnuPG [7].

In spite of the fact that a wide variety of techniques
have been employed for encryption and decryption, making

Implementation of MULET (Multilanguage Encryption Technique)
Algorithm

Kuldeep Bhardwaj
Department of Mathematics, Dr. B.R. Ambedkar University, IBS, Khandari, Agra, (U.P.)

(Received 11 May, 2012, Accepted 12 July, 2012)

ABSTRACT : The multilingual approach in cryptography is not commonly used and hence is not so prevalent
now. The MULET algorithm which is focuses on encryption of plain teat over a range of languages supported by
a Unicode. It is helpful in the localization of cryptographic software took. This paper involves the implementation
of MULET algorithm in.net.

Keywords : Unicode, Encryption, Decryption, Software Localization and Cryptanalysis.

International Journal of Theoretical and Applied Sciences 4(2): 25-32(2012)
International Journal of Theoretical & Applied Sciences, 1(1): 25-31(2009)

use of the multilingual approach is still not very common
and prevalent. This has motivated us to propose a new
novel algorithm that focuses on encryption of plain text
over a range of languages supported by Unicode [8]. Making
use of the mapping techniques enable algorithm to become
very fast efficient and easier to implement. Besides, the
replacement strategy adopted here ensures better safety and
security.

II. MULET ALGORITHM

A. Notation

M : Mapping Constant

ch_map : A set of M-characters from the universal
character set is considered as a Mapping Array.

chno : A set of character for universal character set is
considered as a substitution array.

Quo : Quotients required for decryption (key).

Enc : Ciphered text.

Dec : Deciphered text.

B. Encryption

The text selected for encryption is read character by
character and the Unicode value of each character is
obtained. This value is thereafter divided by the mapping
constant M. The remainder R so determined is used as the
index of mapping array ch_map and ch_map[R] and it is
the corresponding encrypted character from the cipher text
Enc. The questioned obtained after division is stored in
and there array Quo. The quotient is put to use in
decryption. In brief it can be said that the remainder attains
the encrypted character and the quotient holds the key for
decryption of the corresponding character.

The cipher text Enc is likely to have repetition of
characters. This is because of the fact that the encryption
technique maps the characters of the original message to
the mapping array ch_map. In view of this a replacement
strategy is incorporated and it helps in maintaining checks

ISSN No. (Print) : 0975-1718
ISSN No. (Online) : 2249-3247

26 Bhardwaj

over successive repetitions of characters. In case, such
repetitive patterns are observed, they are replaced with a
character in substitution array chno and corresponding to
the number of such repetitions. It has been observed that
this replacement strategy inducts some non-regular
characters into the cipher text and consequently crypto
analysis become evident from the cipher text. The chances
of substitution of multiples to great extent depend upon the
mapping consonant M in addition to the plain text.

C. Decryption

Scanning of the cipher text is carried out for characters
in the substation array. If chno[i] is found to be a number
'm' the character preceding chno[i] in the cipher text is in
number of times to obtain the temporary repeated 'm' number
of times to obtain the temporary decrypted massage. A
comparison of the characters of the temporary decrypted
message is undertaken with the mapping array ch_map. In
case these characters match, the corresponding index of the
mapping array is the remainder R. The Unicode values of
the characters of the original massage are there after
determined by adding R to the product of M and Quo. There
values provide us the corresponding characters of the plain
text and these accounts for the decryption procedure.

D. The Algorithm:

The MULLET Algorithm [7] basically comprises of two
functions viz. Encryption () and decryption () as described
above, Encryption of the plain text is used to obtain the
cipher text which is normally obtained by substitution of
multiples. The transmitted encrypted message Enc is received
by the recipient as Dec. Undoing substitutions followed by
decryption of the cipher text gives back the original message.

A plain text takes as input in the function Encryption
() and obtains the cipher text enc as output.

Begin

 while (! End of plain text)

 Begin

 Read a character from the original file and store the
Unicode value in a variable n ;

 R: = n%k;

 Quo [i] : = n / k ;

 Enc [i] : = ch_map [R]

 Increment i ;

 End

while (! end of Enc)

 Begin

 while (Enc [i] = = Enc [i+1])

 Begin

 Increment count ;

 Increment i ;

 End

if (count >=2)

 Replace the repetitions with

 chno [count] in enc

 Reset count to zero

 End

End

With the cipher text enc as input, the function
Decryption () obtains the original message dec.

Begin

 While (! end of enc)

 Beg in

 If (character is chno [i])

 Remove the character from enc and the character
preceding chno [i] in the cipher text is repeated ' i '
number of times and store in dec

 End

While (! end of Dec)

 Begin

 Compare the character with the mapping array
ch_map;

 Position of the character in ch_map is the required
remainder R ;

 U: = Quo [i] * M + R ;

 Convert U to the corresponding character;

 End

End

III. IMPLEMENTATION OF MULET
ALGORITHM

Existing methodology about various encryption
techniques and algorithms most of them are implemented In
English in those techniques the cipher text produced is not
in a readable for and thus reveal that the message is
encrypted. We are going to implement in Hindi and going
to use Unicode for it.

A. Modules Description

There are basically three modules :

(a) Encryption Module : In this module we are going to
convert our plain text into cipher text by using any
of the following algorithms RSA, RC4 and Elgamal.

(b) Decryption Module : In this module we are going to
convert cipher text into plain text by using the same
algorithm that we have used for encryption.

(c) Mapping Module : In this module we required to
map the cipher text thus produced with the Hindi
dictionary so that the cipher text is in readable form.

Bhardwaj 27

Data Flow Diagrams :

Level 0

User
Login Data

entry
Encryption

Output

Level 1

User
Login Dataentry

Encryption

Output

Data entry

Decryption

Save

Level 2

User name
and

Password

Authentication Data entry

RSA
algorithm

Encryption

DecryptionOutput
Algorithm

DataStore

Flow Chart :

]

START

INPUT
MESSAGE

CONVERT
MESSAGE INTO

UNICODE

ENCRYPTION
USING RSA

CIPHER TEXT IN
HINDI

STOP

DATABASE

KEY
(128 BIT)

The code for implementation of MULET algorithm is
listed below as:

//Encoder Code

Imports System.Security.Cryptography

Imports System.Text

28 Bhardwaj

Imports System.Net.Sockets

Public Class frm_Unicode

 Dim textbytes, encryptedtextbytes As Byte()

 Dim rsa As New RSACryptoServiceProvider

 Dim encoder As New UTF8Encoding

 Dim clientSocket As New

System.Net.Sockets.TcpClient()

 Dim server Stream As Network Stream

 Dim readData As String

 Dim infinite Counter As Integer

 Private Sub Form1_Load (ByVal sender As System.
Object, ByVal e As System.EventArgs) Handles
MyBase.Load

 Me.OutputTableAdapter.Fill(Me.Ds.Output)

 TextBox1.Focus()

 TextBox2.Visible = False

 btn_Decode.Visible = False

 TextBox3.Visible = False

 btn_Reset.Visible = False

 lbl_decoded.Visible = False

 lbl_Encoded.Visible = False

 btn_Close.Visible = False

 btn_Save.Visible = False

 lbl_Message.Visible = False

 clientSocket.Connect("127.0.0.1", 8888)

 End Sub

 Private Sub btn_Encode_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btn_Encode.Click

 Dim TexttoEncrypt As String = TextBox1.Text

 Dim outStream As Byte()

 lbl_Encoded.Visible = True

 TextBox2.Visible = True

 btn_Decode.Visible = True

 btn_Save.Visible = True

 TextBox1.Enabled = False

 textbytes = encoder.GetBytes(TexttoEncrypt)

 encryptedtextbytes = rsa.Encrypt(textbytes, True)

 TextBox2.Text =

Convert.ToBase64String(encryptedtextbytes)

 readData = "Conected to Encoder / Decoder
Server ..."

 msg()

 serverStream = clientSocket.GetStream()

 outStream =

 System.Text.Encoding.ASCII.GetBytes("Admin" + "$")

 serverStream.Write(outStream, 0,
outStream.Length)

 serverStream.Flush()

 Dim ctThread As Threading.Thread = New
Threading.Thread(AddressOf getMessage)

 ctThread.Start()

 outStream =

 System.Text.Encoding.ASCII.GetBytes(TextBox1.Text +
"$")

 serverStream.Write(outStream, 0,
outStream.Length)

 serverStream.Flush()

 End Sub

 Private Sub btn_Decode_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btn_Decode.Click

 lbl_decoded.Visible = True

 TextBox3.Visible = True

 btn_Reset.Visible = True

 btn_Close.Visible = True

 textbytes = rsa.Decrypt(encryptedtextbytes, True)

 TextBox3.Text = encoder.GetString(textbytes)

 btn_Reset.Focus()

 End Sub

 Private Sub btn_Reset_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btn_Reset.Click

 TextBox2.Visible = False

 btn_Decode.Visible = False

 TextBox3.Visible = False

 btn_Reset.Visible = False

 lbl_decoded.Visible = False

 lbl_Encoded.Visible = False

 TextBox1.Enabled = True

 TextBox1.Text = ""

 TextBox1.Focus()

 btn_Close.Visible = False

 lbl_Message.Visible = False

 btn_Save.Visible = False

Bhardwaj 29

 End Sub

 Private Sub btn_Close_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btn_Close.Click

 Me.Close()

 End Sub

 Private Sub btn_Save_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btn_Save.Click

 Me.OutputTableAdapter.Insert(TextBox1.Text,
TextBox2.Text)

 lbl_Message.Text = "Data saved to Database"

 lbl_Message.Visible = True

 btn_Close.Visible = True

 btn_Reset.Visible = True

 End Sub

 Private Sub msg()

 If Me.InvokeRequired Then

 Me.Invoke(New MethodInvoker(AddressOf
msg))

 End If

 End Sub

 Private Sub getMessage()

 For Me.infiniteCounter = 1 To 2

 infiniteCounter = 1

 serverStream = clientSocket.GetStream()

 Dim buffSize As Integer

 Dim inStream(10024) As Byte

 buffSize = clientSocket.ReceiveBufferSize

 serverStream.Read(inStream, 0, buffSize)

 Dim returndata As String = _

 System.Text.Encoding.ASCII.GetString(inStream)

 readData = "" + returndata

 msg()

 Next

 End Sub

End Class

//Database Connectivity

Imports System.Data.OleDb

Public Class frm_Login

 Dim cn As OleDbConnection

 Dim cmd As OleDbCommand

 Dim dr As OleDbDataReader

 Private Sub OK_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
OK.Click

 Try

 cn = New

 OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0;Data

Source=e:\projects\juhi\unicode.accdb;")

 cn.Open()

 cmd = New OleDbCommand("select * from
users", cn)

 dr = cmd.ExecuteReader

 Dim user As String

 Dim pass As String

 Dim flag1 As Boolean

 Dim flag2 As Boolean

 flag1 = False

 flag2 = False

 While dr.Read()

 user = dr(0)

 pass = dr(1)

 If txt_Username.Text.ToLower = user
Then

 flag1 = True

 If txt_Password.Text = pass Then

 flag2 = True

 End If

 End If

 End While

 If flag1 = True Then

 If flag2 = True Then

 MsgBox("Valid User & Password")

 If txt_Username.Text.ToLower =
"admin" Then

 MsgBox("Welcome Admin, You
are allowed to run Encoder & Decoder")

 frm_Unicode.Show()

 End If

 Else

 MsgBox("Incorrect Password")

 End If

 Else

 MsgBox("Unknown User")

 End If

30 Bhardwaj

 Catch

 End Try

 dr.Close()

 cn.Close()

 End Sub

 Private Sub Cancel_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Cancel.Click

 Me.Close()

 End Sub

 Private Sub frm_Login_Load(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
MyBase.Load

 End Sub

End Class

//Server

Imports System.Net.Sockets

Imports System.Text

Module Module1

 Dim clientsList As New Hashtable

 Sub Main()

 Dim serverSocket As New TcpListener(8888)

 Dim clientSocket As TcpClient

 Dim infiniteCounter As Integer

 Dim counter As Integer

 serverSocket.Start()

 msg("Encoder / Decoder Server Started")

 counter = 0

 infiniteCounter = 0

 For infiniteCounter = 1 To 2

 infiniteCounter = 1

 counter += 1

 clientSocket = serverSocket.AcceptTcpClient()

 Dim bytesFrom(10024) As Byte

 Dim dataFromClient As String

 Dim networkStream As NetworkStream = _

 clientSocket.GetStream()

 networkStream.Read(bytesFrom, 0,

CInt(clientSocket.ReceiveBufferSize))

 dataFromClient =
System.Text.Encoding.ASCII.GetString(bytesFrom)

 dataFromClient = _

 dataFromClient.Substring(0,

dataFromClient.IndexOf("$"))

 clientsList(dataFromClient) = clientSocket

 broadcast(dataFromClient + " connected",
dataFromClient, False)

 'msg(dataFromClient + " connected to
Encoder / Decoder Server ")

 Dim client As New handleClinet

 client.startClient(clientSocket, dataFromClient,
clientsList)

 Next

 clientSocket.Close()

 serverSocket.Stop()

 msg("exit")

 Console.ReadLine()

 End Sub

 Sub msg(ByVal mesg As String)

 mesg.Trim()

 Console.WriteLine(" >> " + mesg)

 End Sub

 Private Sub broadcast(ByVal msg As String, _

 ByVal uName As String, ByVal flag As Boolean)

 Dim Item As DictionaryEntry

 For Each Item In clientsList

 Dim broadcastSocket As TcpClient

 broadcastSocket = CType(Item.Value,
TcpClient)

 Dim broadcastStream As NetworkStream = _

 broadcastSocket.GetStream()

 Dim broadcastBytes As [Byte]()

 If flag = True Then

 broadcastBytes =
Encoding.ASCII.GetBytes(uName + " says : " + msg)

 Else

 broadcastBytes =
Encoding.ASCII.GetBytes(msg)

 End If

 broadcastStream.Write(broadcastBytes, 0,
broadcastBytes.Length)

 broadcastStream.Flush()

 Next

 End Sub

 Public Class handleClinet

 Dim clientSocket As TcpClient

Bhardwaj 31

 Dim clNo As String

 Dim clientsList As Hashtable

 Public Sub startClient(ByVal inClientSocket As
TcpClient, _

 ByVal clineNo As String, ByVal cList As
Hashtable)

 Me.clientSocket = inClientSocket

 Me.clNo = clineNo

 Me.clientsList = cList

 Dim ctThread As Threading.Thread = New
Threading.Thread(AddressOf doChat)

 ctThread.Start()

 End Sub

 Private Sub doChat()

 Dim infiniteCounter As Integer

 Dim requestCount As Integer

 Dim bytesFrom(10024) As Byte

 Dim dataFromClient As String

 Dim sendBytes As [Byte]()

 Dim serverResponse As String

 Dim rCount As String

 requestCount = 0

 For infiniteCounter = 1 To 2

 infiniteCounter = 1

 Try

 requestCount = requestCount + 1

 Dim networkStream As
NetworkStream = _

 clientSocket.GetStream()

 networkStream.Read(bytesFrom, 0,
CInt(clientSocket.ReceiveBufferSize))

 dataFromClient =
System.Text.Encoding.ASCII.GetString(bytesFrom)

 dataFromClient = _

 dataFromClient.Substring(0,
dataFromClient.IndexOf("$"))

 msg("From Encoder client - " + clNo
+ " : " + dataFromClient)

 rCount =
Convert.ToString(requestCount)

 broadcast(dataFromClient, clNo, True)

 Catch ex As Exception

 MsgBox(ex.ToString)

 End Try

 Next

 End Sub

 End Class

End Module

B. Technology and System Feasibility:

The assessment is based on an outline design of system
requirements in terms of Input, Processes, Output, Fields,
Programs, and Procedures. This can be quantified in terms
of volumes of data, trends, frequency of updating, etc. in
order to estimate whether the new system will perform
adequately or not this means that feasibility is the study of
the based in outline.

Operating System : Windows 9x/Windows Xp,
Windows ME or more

Processor : Pentium 3.0 GHz or higher

RAM : 256 Mb or more

Hard Drive : 10 GB or more

Database : Ms Access

IV. RESULT AND DISCUSSION

First we start Encoder/Decoder Server through server.exe
in Fig. 1. Fig. 2 shows main window. After the main window
appears login window in Fig. 3. Welcome window shows in
Fig. 4. In Fig. 5 there is three options that is Encode, Decode
and Save to Database which is encrypt and decrypt the
message.

Fig. 1. Server Window.

Fig. 2. Main Window.

32 Bhardwaj

Fig. 3. Login Window.

Fig. 4. Welcome Window.

Fig. 5. Encode and Decode Window.

Encryption of various messages from different languages
can be easily carried out with the help of MULLET algorithm.
This is definitely the characteristic feature of the algorithm
as it paves the way for the localization of software in crypto
graphic domain [5]. It is also an interesting fact that
replacement strategy can be easily applied when we have
successive repetition of characters. This mechanism is also
highly effective in hiding the number of characters in the
cipher text and thus makes it extremely difficult for the
intruders to predict two message size.

V. CONCLUSION

The MULLET algorithm described above, direct mapping
technique has been used which apart from being simple in
implementation also reduces run time complexity. Thus, the
ability of the proposed algorithm to work over different
language domains would simplify and facilitate the
localization of crypto graphic software tools. It has also
been observed that the algorithm is immune to intruders
and the robustness of this encryption method is attributable
to multiple facets of the algorithm.

The algorithm used in this implementation is feasible to
use. The algorithm is efficient to use and produces the
definite output. There are some manipulations which are
done to improve the efficiency for the implementation. Over
all we would say that as till now this implementation has
been running successfully.

VI. ACKNOWLEDGEMENT

The author wish to thank Dr. Sanjay Chaudhary for his
constant encouragement for completion of this work. The
author wish to acknowledgement Mis Richa Kakkar for her
co-operation for completing this paper, also to Dr. Santosh
Kumar Yadav for his encouragement during this work.

REFERENCES
[1] Ross J. Anderson, "Why Cryptosystems Fail",

Communications of the ACM, New York, USA, 1994, pp.
32-40, (1994).

[2] Francois-Xavier Standaert, Gilles Piret, Jean-Jacques
Quisquater, "Cryptanalysis of Block Ciphers: A Survey", UCL
Crypto Group, (2003).

[3] R. L. Rivest, "The RC5 encryption algorithm", Proceedings
of the 1994 Leuven Workshop on Fast Software Encryption,
Springer-Verlag, pp. 86-96, (1995).

[4] William C. Barker, "Recommendation for the Triple Data
Encryption Algorithm (TDEA) Block Cipher", National
Institute of Standards and Technology, NIST Special
Publication 800-67, (2008).

[5] Collins, R.W., "Software localization for Internet software,
issues and methods", Software, IEEE, Florida, USA, pp. 74-
80, (2002).

[6] Elliptic Curve Cryptography, Certicom Research, (2000).

[7] G. Praveen Kumar, Arjun Kumar Murmu, Biswas Parajuli,
Prasenjit Choudhury, "MULET: A Multilanguage Encryption
Technique," itng, Seventh International Conference on
Information Technology, pp.779-782, (2010).

[8] Unicode Character form http://www.unicode.org.

